Catalog Description:
CHE 403.01 Teaching Chemistry Safely: Secondary Schools
3 sem. hrs. Topical analysis of current best practices in teaching chemistry safely. Not for credit in MS in Chemistry. Course may be repeated for credit. Prerequisite: CHE 301, CHE 401, CHE 402, or equivalent

Instructor: Dr. Allison Meyer
Email: aameyer@ilstu.edu

Contact Hours:
This course is a structured, asynchronous course available online for 8 or 16 weeks from the course start date. Each assignment will be available at the start of the course but will have specific deadlines for when they need to be completed.

Accommodations:
Any student needing to arrange a reasonable accommodation for a documented disability should contact Disability Concerns at 350 Fell Hall, 438-5853 (voice), 438-8620 (TTY).

Materials:
Required (Provided by ISU):
Access to the ReggiNet Course Website – Available three days after course registration.

Required Flinn Scientific E-Learning modules
In this course you will need access to the Flinn Scientific High School Laboratory Safety certification video program and the following Flinn E-Learning Packages (3), which contain 12 episodes total:
Start with Safety
Safe Laboratory Practices
Teaching Safety To Students

Required Flinn Chemical and Biological Catalog and Safety Reference Manual
You will also need a copy of the Flinn Chemical and Biological Catalog and Safety Reference Manual 2009 or more recent.
Any additional required material will be provided within the ReggieNet course.
Required Technology:

- **Processors**: Pentium PC, 500 MHz or better
- **RAM**: 512 MB+
- **Screen Resolution**: 1024 x 768 or higher
- **Color Depth**: High Color, 16 Bit millions
- **Bandwidth**: 128 Kbps download, dedicated broadband or faster
- **Video Player**: Flash Player 9.0.115.0 or above required for movie player

<table>
<thead>
<tr>
<th>PC Requirements</th>
<th>Mac Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Operating System</td>
</tr>
<tr>
<td>Windows 2000, XP and above</td>
<td>10.4 and above</td>
</tr>
<tr>
<td>Browser</td>
<td>Browser</td>
</tr>
<tr>
<td>Internet Explorer 6.0 - 7.0</td>
<td>Safari 2.0+</td>
</tr>
<tr>
<td>Firefox 2.0+</td>
<td>Firefox 2.0+</td>
</tr>
</tbody>
</table>

Course Overview and Objectives:

This course constitutes a survey course of ways in which we can understand and teach chemistry safely. Students will improve their chemistry safety knowledge from the resource materials as well as be expected to search local and internet-based resources for current best practices. Students will be introduced to a safety certification program as well as ways to introduce their pupils to safe practices. It will help develop answers to the following questions:

1. What is our current best understanding of how to teach chemistry safely?
2. What are the safety considerations and risks associated with teaching chemistry?
3. What is the role of the National Standards and State Standards in determining how to teach chemistry safely?
4. What pedagogical techniques are appropriate for teaching chemical safety in secondary schools?
5. What are the challenges associated with teaching chemistry safely?

Student Tasks/Assignments:
1. **Online quizzes** within ReggieNet over scholarly journal articles about safety (provided in the online course), three Flinn safety packages, and each unit of the Flinn Scientific High School Laboratory Safety certification. Each chapter of the safety program includes a series of assessments designed to test the student’s knowledge of current best practices in teaching chemistry safely. The Flinn packages and certification units are outlined below:

Certification Unit I. Introduction and Overview

Certification Unit II. Safety—The Teacher’s Duty of Care
- The Teacher’s Duty of Care
- Legal Foundation of Negligence
- Causes of Laboratory Accidents
- Legal Analysis—Teacher’s Duty to Instruct and Warn
- Ideas to Demonstrate You Are a Responsible Science Teacher
- Legal Analysis—Establishing the Teacher’s Duty of Care

Certification Unit III. Chemical and Laboratory Safety Regulations
- Hazard Communication and the Laboratory Standard
- Laboratory Ventilation and Use of Fume Hoods
- Material Safety Data Sheets and Chemical Label Requirements
- Five-Minute Safety Inspection
- Emergency Alert and First Aid

Certification Unit IV. Principles of Toxicology
- Basic Principles of Toxicology
- Relative Toxicity—Understanding and Assessing Risks
- Reducing Exposure to Laboratory Chemicals
- FAQs—Applying the Principles of Toxicology

Certification Unit V. The Use of Personal Protective Equipment
- Goggle Safety
- Aprons, Gloves, and Other Personal Protective Equipment
- FAQ—Proper Lab Attire

Certification Unit VI. Laboratory Safety Equipment and Procedures
- The Duty to Provide and Maintain Safe Laboratory Facilities
- Master Utility Controls
- Electrical Safety
- Fire Blankets
- Fire Extinguisher Basics and Training
- Eyewash Requirements
- Safety Showers
- FAQ—Lack of Proper Safety Equipment

Certification Unit VII. Safe Laboratory Practices
- The Duty to Supervise—Classroom Management Tips
- How to Conduct a Safe Lab Activity
- Safety Guidelines for Chemical Demonstrations
- Biology Lab Safety—Dissection and Microbiology
- Glassware Safety

Certification Unit VIII. Safe Chemical Management—Principles and Practice
- Chemical Purchasing Guidelines
Procurement Procedures
Classroom Chemical Storage and Security
Dispensing Chemicals and Acid Safety
Chemical Spill Control

Certification Unit IX. Storage and Disposal of Chemicals
- Safety and Design of the Chemical Storeroom
- Chemical Storeroom Ventilation
- Chemical Storage—Storing Chemicals by Compatible Families
- Chemical Treatment and Disposal Options
- FAQ—Radioactive Chemicals
- Licensed Hazardous Waste Disposal

Certification Unit X. How To Improve Laboratory Safety
- FAQ—Administration and Safety Concerns
- How to Get Action—Developing a 3-Year Plan

Flinn Video Packages: Activities for Teaching Chemical Safety

Start with Safety—Safety Demonstrations - Simple, practical, effective demonstrations will help you teach students the meaning of specific hazard warnings and the importance of following safety precautions.
- Safety Demonstrations
- Flaming Vapor Ramp
- Sulfuric Acid & Nylon
- “Do Not Open” Bottle
- Grease Fire

Safe Laboratory Practices - These activities will help you model safe laboratory practices and will remind you to perform a “safety checklist” when working in the lab.
- Contact Lens Demonstration
- The Red Plague
- Whoosh Bottle
- Methyl Alcohol Flame Test

Teaching Safety To Students - Getting students to comply with laboratory safety rules and teaching them proper lab technique are two of the most important responsibilities of every chemistry teacher.
- Goggle Safety
- Laboratory Safety Challenge
- MSDS Challenge Inquiry Lab

Journal Articles on Safety (provided within the ReggieNet course)

Quizzes are scored as credit or no credit. To receive credit for a quiz, students must receive a 90% or better on the quiz. Quizzes may be retaken up until the submission deadline until a 90% or higher is achieved.

2. Student Project’s by Category:

“Category 1” Projects:

Truck Project - For this assignment, you will take a picture of yourself with EITHER a Department of Transportation placard from a truck or other shipping method – OR– a NFPA diamond hazard placard. In your paper, you will provide a brief personal introduction along with information on the compound involved in the placard. The paper will follow APA formatting guidelines.

Identifying Safety Hazards Project - Safety hazards can occur in laboratory settings, even with the best preparation on the part of the teacher. For this project, you will examine photos taken during a specific heat lab. For each picture, you will identify the safety hazard and explain the steps that could be taken to remove this hazard.

“Category 2” Projects:

Lab Re-Write - Find an experiment or demonstration which you currently do or would like to do that is missing information about safety. Improve the safety of this experiment or demonstration. You can do this in one of two ways: either rewrite the experiment/demonstration to include the safety information, or create an extra “safety information sheet” that accompanies the original experiment or demonstration.

Safety Lesson Plan - Create an Introduction to Laboratory Safety lesson plan (Or improve upon your current lesson). When students are finished with this lesson, they should be prepared for their first experiment. Your lesson could be designed as an introductory lesson for a specific course (chemistry, AP chemistry, biology, physical science, etc.) and so should consider students prior knowledge and the safety issues relevant to experiments that would be carried out in that course. For this assignment, No more than 50% of the lesson should be direct instruction.

Students _must_ complete all four of these projects throughout the course in order to receive an “A” grade, or one project from each category throughout the course in order to receive a “B” grade. Specific details and rubrics for each project will be provided within the course. Projects are also graded as credit or no credit. Each student will have two attempts to complete each project. A checklist is provide for each project to determine if the project has been mastered and receives credit. The checklist will be filled out by the instructor. Upon initial submission, if the project does not meet the stated requirements in the rubric/checklist, then the student will have one week (see calendar below) to redo and resubmit that project. If the student fails to resubmit by the deadline or does not meet the requirements of the assignment after the second attempt, that project will not be counted towards the student’s grade. For a description of the grading process, see the Grading Scale section below.
Grading Scale

This course uses a Mastery System for grading. The course contains five different components:

1. Quizzes over safety videos and articles
2. Truck Project (Category 1)
3. Identifying Safety Hazards Project (Category 1)
4. Lab Re-Write (Category 2)
5. Safety Lesson Plan (Category 2)

The grading scale requires completion of the following components:

A = 92% of the quizzes (11 out of 12), ALL “Category 1” projects, ALL “Category 2” projects
B = 83% of the quizzes (10 out of 12), ONE “Category 1” project, ONE “Category 2” project
C = 83% of the quizzes (10 out of 12)
D = 75% of the quizzes (9 out of 12)
F = Less than 9 of the quizzes completed and no projects completed.

If you complete the projects but do not complete the number of required quizzes, you will receive one grade lower than described.

(ex. Student completes all four Category 1 and Category 2 projects but only completes 10 out of 12 quizzes—that student would receive a B).

Assessment Schedule (Fall 2016)

All assignments are due at midnight central time on the following days unless otherwise specified within the course calendar in ReggieNet.

<table>
<thead>
<tr>
<th>Due Date</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 05</td>
<td>Quiz Practice & Quiz 1</td>
</tr>
<tr>
<td></td>
<td>Quiz 2</td>
</tr>
<tr>
<td></td>
<td>19 “Category 1” project (student choice of which project)</td>
</tr>
<tr>
<td></td>
<td>26 Quiz 3</td>
</tr>
<tr>
<td>Oct 03</td>
<td>Quiz 4 & “Category 1” project resubmission</td>
</tr>
<tr>
<td></td>
<td>Quiz 5 & “Category 2” project (student choice of which project)</td>
</tr>
<tr>
<td></td>
<td>17 Quiz 6</td>
</tr>
<tr>
<td></td>
<td>24 Quiz 7 & “Category 2” project resubmission</td>
</tr>
<tr>
<td></td>
<td>31 Quiz 8</td>
</tr>
<tr>
<td>Nov 07</td>
<td>“Category 1” project</td>
</tr>
<tr>
<td></td>
<td>14 Quiz 9</td>
</tr>
<tr>
<td></td>
<td>21 Quiz 10 & “Category 1” project resubmission</td>
</tr>
<tr>
<td></td>
<td>28 Quiz 11</td>
</tr>
<tr>
<td>Dec 05</td>
<td>“Category 2” project</td>
</tr>
<tr>
<td></td>
<td>12 Quiz 12 & “Category 2” project resubmission</td>
</tr>
</tbody>
</table>